

Status of the Daya Bay Experiment

Chao Zhang BNL

on behalf of the Daya Bay collaboration

Where is Daya Bay?

Daya Bay Underground Laboratory

Daya Bay Collaboration

The Goal: θ_{13}

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = U_{\text{PMNS}} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix} \quad \text{Neutrino Oscillation}$$

$$\begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{-i\alpha_{1}/2} & 0 \\ 0 & 0 & e^{-i\alpha_{2}/2} \end{pmatrix}$$

- The only unknown mixing angle
- Tiny θ_{13} = Nightmare for CP violation hunters

 $\sin^2 2\theta_{13} < 0.15$ @90% C.L. (CHOOZ)

Recent Hint of θ_{13}

Daya Bay's goal:

 $\sin^2 2\theta_{13} < 0.01$ @ 90% C.L. in 3 years of data taking

Reactor v.s. Accelerator

Nuclear Reactor

- ullet pure $ar
 u_e$ source
- 6 $\bar{\nu}_e$ / fission 2 x 10²⁰ $\bar{\nu}_e$ / sec / GW_{th}

 $\frac{\Delta m^2 \sim 10^{-3} \, eV^2}{E \sim MeV} \Longrightarrow L \sim 1 \, km$

- Clean signal
- no CP violation
- negligible matter effects
- Free neutrinos!

Reactor Neutrinos Have Long Been Our Friends

Fred Reines (?) working at a neutrino detector (circa 1953)

Reactor Neutrino 'Oscillation'

$$P_{e,e} = 1 - \sin^2 2\theta_{12} \sin^2 (1.27\Delta m_{12}^2 L/E)$$

Reactor Neutrinos are 'Well Understood'

TABLE I. Estimated systematic uncertainties relevant for the neutrino oscillation parameters Δm_{21}^2 and θ_{12} .

	Detector-related (Reactor-related (%)		
Δm^2_{21}	Energy scale	1.9	$\bar{\nu}_e$ -spectra [7]	0.6
Event rate	Fiducial volume Energy threshold Efficiency Cross section	0.6	$\bar{\nu}_e$ -spectra Reactor power Fuel composition Long-lived nuclei	2.4 2.1 1.0 0.3

Anti-neutrino Detection is 'Well Understood'

Inverse Beta Decay

- E_{threshold} = 1.8 MeV
- Dominant process at low energy
- 'Large' cross section σ~10⁻⁴² cm²
- Distinctive coincidence signature in a large liquid scintillator detector

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

$$n + {}^{A}Gd \rightarrow {}^{A+1}Gd + \gamma's$$

Three Games in Town

		Thermal Power (Tons)		Near		Far		δ_{SYST}
				Dist (m)	Depth (mwe)	Dist (m)	Depth (mwe)	(%)
OUBLE CONTRACTOR OF THE PROPERTY OF THE PROPER	Double Chooz	8.5	2×10	400	115	1050	300	0.6
IRENO (1)	RENO	16.4	2×16	290	130	1380	460	0.5
Daya Bay	Daya Bay	17.4	8×20	363 & 481	260	1985 & 1613	910	> 0.2 < 0.4

Daya Bay is larger, deeper, and has better systematics Aim: precision measurement of θ_{13} to $\sin^2 2\theta_{13} < 0.01$

How to achieve 0.01?

- Increase Statistics: Powerful Nuclear reactor + Large target mass
- Reduce Systematic Uncertainties
 - Reactor Related
 - Optimize baseline for the best sensitivity
 - Near and far detectors to minimize reactor-related uncertainties
 - Detector Related
 - 'Identical' pairs of detectors to do relative measurement
 - Comprehensive detector calibration
 - Interchange near and far detectors (optional)
 - Background Related
 - Deep underground to reduce cosmic induced backgrounds
 - Active and passive shielding

Nuclear Power Plants in China

- 13 reactor cores in operation, many under construction
- ~10GW electric, ~2% of total electric power
- Increase to ~6% by 2020

Sites and Reactors

- Three reactor complex, each with 2 cores, 17.4 GWth in total
- Two near sites to sample flux from reactor groups
- Four detectors (80T) at Far site to increase statistics
- Multiple detectors per site to cross-check detector efficiency

Baseline

	DYB	LA	Far
DYB cores	363	1347	1985
LA cores	857	481	1618
LA II cores	1307	526	1613

Anti-neutrino Event Rate

Daya Bay near site 930
Ling Ao near site 760
Far site 90

events/day per 20 ton module

Anti-Neutrino Detector

8 'identical' detectors: 2@near site x 2, 4@far site Build and fill in pairs

Each detector has 3 nested zones separated by Acrylic Vessels:

Inner: 20 tons Gd-doped LS (target mass)

Mid: 20 tons LS (gamma catcher)
Outer: 40 tons mineral oil (buffer)

Each detector has:

192 8-inch Photomultipliers
Optical reflectors at top/bottom of cylinder
12%/√E energy resolution

Gd-LS defines the target volume No fiducial volume cut required

Gd-Loaded Liquid Scintillator

Daya Bay experiments uses 185 ton 0.1% gadolinium-loaded liquid scintillator (Gd-LS)

Gd-TMHA + LAB + 3g/L PPO + 15mg/L bis-MSB

Gd-LS are produced in multiple batches but mixed in reservoir onsite to ensure identical detectors

Near/Far Measurements

- Largest systematic uncertainties form reactor flux/spectra
- Near/Far measurements to cancel

Target Mass Measurement

ISO Gd-LS weighing tank

20-ton, teflon-lined ISO tank

LS Gd-LS MO

Load cell accuracy < 0.02%

Pump stations

Coriolis mass flowmeters accuracy < 0.1%

Filling platform

Detector

Energy Calibration

- 3 ACUs / detector
 - Central Gd-LS
 - Edge Gd-LS
 - LS (gamma catcher)
- Each ACU has three sources (parked)
 - ⁶⁸Ge (e+ threshold)
 - ²⁴¹Am¹³C (n threshold) +⁶⁰Co (2.5MeV)
 - LED (timing)
- Simultaneous, automated weekly deployment
- Spallation neutrons (10⁴/day/detector @Near, 10³/day/detector @Far) for full volume check

Muon Veto System

Multiple muon veto detectors

Water Cherenkov

- Detectors submerged in water, passive shielding against neutrons and gammas
- Optically separated by Tyvek sheets into inner / outer region for cross-check
- 8-inch PMTs mounted on frames, 288 @Near, 384 @Far

RPC

- Independent muon tagging
- Retractable roof above pool

	DYB site	LA site	Far site
Vertical overburden (m)	98	112	355
Muon Flux (Hz/m ²)	1.16	0.73	0.041
Muon Mean Energy (GeV)	55	60	138

arXiv:hep-ex/0701029v1 (TDR)

Redundant veto system = highly efficient muon rejection

$$\epsilon > (99.5 + / - 0.25)\%$$

Backgrounds

Accidentals

- Two uncorrelated events mimic prompt + delayed signal
- Fast neutrons
 - proton recoil (prompt) + neutron capture (delayed)
- ⁹Li / ⁸He

 beta decay (prompt) + neutron capture (delayed)

s 0.4	
0.35 ⊳	(a) Oscillation Signal (b) ⁹ Li (0.2%)
Arbitary Units	(a) (c) Fast Neutrons (0.1%)
q ₁ 0.25	(d) Accidentals (0.1%) Assuming
0.2	$\sin^2 2\theta_{13} = 0.01$
0.15	(d) \
0.1	
0.05	(b)
0	(c) 0 1 2 3 4 5 6 7 8 9 10 E _{vis} (MeV)
	vis · ·

	DYB site	LA site	far site
Antineutrino rate (/day/module)	930	760	90
Natural radiation (Hz)	< 50	< 50	< 50
Single neutron (/day/module)	18	12	1.5
β -emission isotopes (/day/module)	210	141	14.6
Accidental/Signal	< 0.2%	<0.2%	<0.1%
Fast neutron/Signal	0.1%	0.1%	0.1%
⁸ He ⁹ Li/Signal	0.3%	0.2%	0.2%

arXiv:hep-ex/0701029v1 (TDR)

Sensitivity

 $\sin^2 2\theta_{13} < 0.01$ @ 90% C.L. in 3 years of data taking

- Summer 2011 start physics data taking with near site
- Summer 2012 start data taking with full experiment

Daya Bay Status

Civil Construction

- Experimental (Near) Hall 1, 2 finished
- Experimental (Far) Hall 3 finishing this summer

A Busy Past Year

- Transport underground
- Fill with scintillator

- Install Muon system
- Install filled ADs
- Begin data taking

- Assemble ADs above ground
- Test assembled ADs

Surface Assembly Building

Anti-Neutrino Detector Assembly

AD #1-4 are fulling assembled

Stainless Steel Vessel (SSV) in assembly pit

Install Lower reflector

4m Acrylic Vessel (AV)

Lower 3m AV

Close SSV Lid

Install Top reflector

Install PMT Ladders

More Pictures of the AD

AD Dry Run

 Integrated Test of the complete AD system before moving to underground for filling

AD Dry Run

- First AD Data
 - Double-pulsed LED to mimic antineutrino interaction
 - Dry run in assembly building (above ground). Can see muon events

AD Dry Run

Reconstructed Vertex of Off-axis LED Deployments

AD1 & AD2 Comparison

AD Transporting

AD Filling

- AD #1 and #2 successfully filled
 - Precision mass measurement
 - Liquid level monitor
 - Temperature control

Muon System Installation

- Muon System Status (EH1)
 - All 288 PMTs installed
 - RPC modules installed
 - Pool dry run finished with good performance

Fully installed RPC

Pool divided by Tyvek into inner and outer regions

calibration LED flashing

Move AD into the Pool

- Daya Bay Near Site (EH1) Status
 - AD #1 and #2 are in the pool
 - Taking AD data with dry pool
 - Water fill in August

Summary

- Daya Bay experiment is designed to measure the unknown mixing angle θ_{13} to a great precision: $\sin^2 2\theta_{13} < 0.01$ @ 90% C.L.
- Smooth progress
 - Two ADs for Hall 1 (Daya Bay near) fully completed
 - Muon system for Hall 1 completed. Water pool fill in August
 - Hall 1 physics data taking soon

Exciting time as rapidly increasing data coming!

- Toward full experiment
 - Hall 2 (Ling Ao near) installation started
 - Hall 3 (Far) installation after this summer
 - Full Data taking next summer (2012)

Detector Related Systematics

Source of uncertainty		Chooz	Daya Bay (relative)			
		(absolute)	Baseline	Goal	Goal w/Swapping	
# protons		0.8	0.3	0.1	0.006	
Detector	Energy cuts	0.8	$\bigcirc 0.2$	0.1	0.1	
Efficiency	Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	< 0.01	< 0.01	< 0.01	
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%	

arXiv:hep-ex/0701029v1 (TDR)

- Baseline: achievable through proven methods
- Goal: with additional calibration and analysis efforts
- Swapping: potential improvement by swapping near/far detectors

Most systematic uncertainties reduced through detector design